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THE DISSIPATION RANGE IN ROTATING TURBULENCE∗

ROBERT RUBINSTEIN† AND YE ZHOU‡

Abstract. The dissipation range energy balance of the direct interaction approximation is applied to
rotating turbulence when rotation effects persist well into the dissipation range. Assuming that RoRe1/2 <<

1 and that three-wave interactions are dominant, the dissipation range is found to be concentrated in the
wavevector plane perpendicular to the rotation axis. This conclusion is consistent with previous analyses
of inertial range energy transfer in rotating turbulence, which predict the accumulation of energy in those
scales.
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1. Introduction. Kraichnan [1] demonstrated that despite the analytical complexity of the equations
of the direct interaction approximation, solutions representing the universal inertial and dissipation ranges of
turbulence are readily accessible. In the inertial range, where energy transfer vanishes, the closure equations
are satisfied by a power law spectrum with a constant energy flux from large to small scales of motion.

In the dissipation range, viscous dissipation balances the energy input to each scale from nonlinear
interaction. By assuming that the turbulent time scale is the viscous time scale Θ ∼ (νk2)−1, the dissipation-
range spectrum

E(k) ∼ k3 exp(−βk/kd)(1.1)

is obtained. In Eq. (1.1), kd = (ε/ν3)1/4 is the Kolmogorov scale; β will be used throughout to denote
a universal constant, but not the same constant each time it appears. This spectrum is consistent with
experimental and numerical data [2, 3]. The theory also predicts that nonlinear interactions in the dissipation
range are predominantly among nearly collinear wavevector triads; this conclusion is evaluated in [4, 5, 6].

Kraichnan [1] also proposed a near-dissipation range balance in which a nonlinear time scale replaces the
viscous time scale. If this time scale is determined, consistently with Eulerian DIA by the sweeping hypothesis
Θ ∼ (V0k)−1, the energy spectrum E(k) ∼ k2 exp(−k/kd) is obtained. If the Kolmogorov time-scale is used
instead, the result would be

E(k) ∼ k5/3 exp(−k/kd)(1.2)

Sirovich et al. [7] propose an energy spectrum covering both the inertial and dissipation ranges which reduces
to Eq. (1.2) in the dissipation range.

2. Analysis. In rotating turbulence, the additional time-scale introduced by the Coriolis force makes a
variety of dissipation range balances possible. Thus, although the very smallest scales will always be subject
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to the viscous time-scale, leading to the spectrum of Eq. (1.1), a different result might be anticipated when
wave interactions dominate nonlinearity well into the dissipation range.

The standard elementary scaling arguments suggest when this condition applies. The wave frequency in
rotating turbulence is determined by the dispersion relation of inertial waves as ω(k) = Ωkz/k. To begin,
we will ignore the angular dependence of this frequency. Assuming the spectrum [8] for rapid rotation
E(k) ∼ (εΩ)1/2k−2 and defining the rotational dissipation scale kd,Ω by the condition

∫ kd,Ω

0

νk2E(k)dk = ε(2.1)

there results kd,Ω ∼ (ε/Ων2)1/2. The viscous frequency scale exceeds the wave frequency scale at k′d,Ω defined
by ν(k′d,Ω)2 ∼ Ω. Assume that this scale is much larger than kd,Ω so that

kd,Ω/k′d,Ω ∼ ε1/2

Ων1/2
∼ RoRe1/2 << 1(2.2)

and consider the scales satisfying kd,Ω < k < k′d,Ω.
The direct interaction approximation (DIA) predicts the dissipation range energy balance [1]

2νk2Q(k) =
1
4

∫
dpdq δ(k− p− q)

∫ ∞

0

dτ ×
Pimn(k)Pi′rs(k)Qmr(p, τ)Qns(q, τ)Gii′ (k, τ)(2.3)

Standard notation is used in Eq. (2.3): Qij(k, τ) = < ui(k, t)uj(k′, s) > /δ(k+k′) is the two-time correlation
function, where τ denotes the time difference τ = t− s. The single-time correlation function is denoted by
Qij(k), and the DIA response function is Gij(k, τ). The tensorially isotropic form Qij(k) = Q(k)Pij(k) is
assumed, where Pij(k) = δij − kikjk

−2 and finally, Pimn(k) = kmPin(k) + knPim(k).
Eq. (2.3) is simply the general DIA energy balance, with eddy damping ignored in comparison to viscous

damping. The assumption Eq. (2.2) means that wave turbulence theory [9] applies in the dissipation range.
Therefore, the DIA response function Gij is simply the linear response

Gij(k, τ) = {cos(2Ωkzτ)/k)ξ1
ij(k) + sin(2Ωkzτ)/k)ξ0

ij(k)}H(τ)(2.4)

where H is the unit step function and the tensors ξi are defined in terms of the Craya-Herring basis

e(1)(k) = k×Ω/ | k×Ω |
e(2)(k) = k×(k×Ω)/ | k×(k×Ω) |(2.5)

by

ξ0
ij = e

(1)
i e

(2)
j − e

(1)
j e

(2)
i

ξ1
ij = e

(1)
i e

(1)
j + e

(2)
i e

(2)
j(2.6)

Note that ξ1
ij = Pij(k). At lowest order in the weak turbulence approximation,

Qij(k, τ) = Gim(k, τ)Qmj(k) + Gjm(k,−τ)Qmi(k)(2.7)

For the correlation function Q(k), we provisionally adopt Kraichnan’s dissipation range hypothesis [1]

Q(k) = κ(k/kd,Ω)αe−(βk/kd,Ω)(2.8)
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where the dimensional constant κ will be determined by the calculation. Substituting Eqs. (2.4)-(2.8) in the
dissipation range balance Eq. (2.3), the right side will contain time integrals of the form

R(k,p,q) =
∫ ∞

−∞
dτ exp iτΩ{kz

k
± pz

p
± qz

q
}(2.9)

where the lower limit of integration insures that the result is real. We can assume [10]

R(k,p,q) =
1
Ω

δ(
kz

k
± pz

p
± qz

q
)(2.10)

As Eq. (2.10) shows, the integral in Eq. (2.3) vanishes unless the triad k,p,q satisfies the resonance
condition

kz

k
± pz

p
± qz

q
= 0(2.11)

But as Kraichnan [1] notes, the exponential ansatz Eq. (2.8) forces the triad to be nearly collinear: the
quantities exp(−βk) on the left side of Eq. (2.3) and exp−β(| p | + | q |) on the right can be comparable
only if | k |≈| p | + | q |, whence the triangle inequality implies near collinearity of the vectors k,p,q. In
this case,

p = ±p

k
k + r

q = ± q

k
k− r(2.12)

where ±p± q = k, and p · r = 0, therefore

| p |≈ p(1 +
r2

p2
)

| q |≈ q(1 +
r2

q2
)(2.13)

In view of Eq. (2.8), the integral in Eq. (2.3) decays exponentially with r.
It is immediately evident that substitution of Eq. (2.12) into the resonance condition Eq. (2.11) yields

the contradiction ±1 ± 1 ± 1 = 0 unless kz is nearly zero. Thus, the resonance and collinearity conditions
can only be satisfied by nearly horizontal wavevector triads. The right side of Eq. (2.3) is therefore nearly
zero for non-horizontal wavevectors k, contradicting the assumption that the left side is isotropic.

But by assuming instead that the energy spectrum is planar, so that instead of Eq. (2.8),

Q(k) = κ(k/kd,Ω)αe−(βk/kd,Ω)δ(kz)(2.14)

we find that Eq. (2.3) can be satisfied, since
∫

dpdq δ(k− p− q)δ(pz)δ(qz) =
∫
q=k−p

dp δ(pz)δ(kz)(2.15)

If the dissipation range excitation is confined to the plane kz = 0, the wave time-scale does not apply since
the planar modes are unaffected by rotation. The dissipation range balance must be computed assuming
the viscous time-scale instead. With this understanding, the integrations in Eq. (2.3) are easily performed
using the variables p, r in place of p, and lead to the result

κk2α+1k1−2α
d,Ω /ν ∼ νk2(k/kd,Ω)α(2.16)
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where the common exponential factor has been cancelled from both sides and a common factor of δ(kz) is
cancelled using Eq. (2.15). The powers of k balance if α = 1, consequently κ = ν2. Therefore, the correlation
function is

Q(k) = Cν2(k/kd,Ω)e−β(k/kd,Ω)δ(kz)(2.17)

The effect of rotation is indirect: rotation excludes certain classes of vectors from the dissipation range, but
the dissipation range dynamics in the remaining scales is independent of rotation.

This conclusion was based on the impossibility of satisfying the three-wave resonance conditions by
nearly collinear vectors, except when those vectors are nearly horizontal. In problems in which the dispersion
relations do not permit three-wave interactions, perturbation theory leads to a modified equation of motion
for waves with a higher order nonlinearity than the governing equations [11]. If the governing equations
are quadratically nonlinear, the result is a theory with a cubic nonlinearity. For such a theory of four-wave
interactions, nontrivial resonances are always possible.

It is therefore natural to ask whether four-wave interactions could play a role in the dissipation range of
rotating turbulence. The possible role of four-wave interactions in the inertial range of rotating turbulence
has been suggested by Yakhot [12]. The dissipation range balance for four-wave interactions, which replaces
Eq. (2.3) has the form

2νk2Qij(k) =
∫

dpdp′dqδ(k − p− p′ − q)
∫ ∞

0

dt

∫ ∞

0

dt′
∫ ∞

0

ds×
Pimn(k)Pm′rs(p)Pj′kl(k)Pk′pq(p)Gmm′(p, t− s)Gkk′ (p, t′ − s′)×
Gjj′ (k, t− t′)Qrp(p′, s− s′)Qsq(p− p′, s− t)Qnl(q, t− s)(2.18)

in which only one representative term is written on the right side. The assumption of near collinearity takes
the form

p = ±p

k
k + r

p′ = ±p′

k
k + r′

q = ± q

k
k− r(2.19)

Quartets of this form can always be found to satisfy the four-wave resonance condition

kz

k
± pz

p
± p′z

p′
± qz

q
= 0(2.20)

Substituting the exponential ansatz Eq. (2.8) in the four-wave dissipation range balance Eq. (2.18),

k6k4
d,Ω(k/kd,Ω)3αΩ−3κ2 = νk2(k/kd,Ω)α(2.21)

Balancing the powers of k gives α = −2. The definition of kd,Ω implies

Q(k) = C′
D

Ω7/2ν9/2

ε2
(k/kd,Ω)−2e−β′k/kd,Ω(2.22)

In problems in which three- and four-wave interactions are both present, it can be assumed that the
three-wave processes are dominant [13]. In this case, the conclusion that the dissipation range spectrum
contains only horizontal vectors is consistent with the picture of energy transfer in rotating turbulence
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proposed on the basis of closure studies by Cambon et al. [14, 15], namely that in the inertial range, energy
is transferred to the wavenumber plane perpendicular to the rotation axis. Further theoretical support for
this conclusion was provided by the instability principle of Waleffe [9].

The impossibility of dissipating energy in nearly vertical directions by energy transfer to smaller scales
would naturally force the transfer of energy toward the horizontal plane, where viscous dissipation is possible.
Although this picture of energy transfer in the inertial and dissipation ranges is self-consistent, it must be
stressed that the conclusions about inertial range transfer do not require the strong restriction on the Rossby
number required here.

It should be noted that the prediction that the dissipation range is restricted to exactly horizontal vectors
is a consequence of ignoring the angular dependence of the wave time-scale. In fact, since the wave frequency
is Ωkz/k, the condition kd,Ω ≥ kd occurs for wavevectors satisfying kz/k ≤ cos θ where cos θ = ε1/2/ν1/2Ω.
For these modes, the viscous time-scale is dominant, and the three-wave dissipation range extends to the
region −k cos θ ≤ kz ≤ k cos θ instead of to the plane kz = 0. Note also that this argument shows that the
scale kd,Ω in Eq. (2.17) should be replaced by the Kolmogorov scale kd.

The approximate two-dimensionalization of the small scales of rotating turbulence under the limit defined
by Eq. (2.2) raises the question of the relationship between the present results and the Taylor-Proudman the-
orem [16]. As noted by Smith and Waleffe [17], the large scales of rapidly rotating turbulence are always sub-
ject to the Taylor-Proudman theorem since they are nearly steady. Whereas the Taylor-Proudman theorem
requires the applicability of steady, linear dynamics, the present argument based on wave interactions allows
both unsteadiness and nonlinearity. The possibility that a combination of large-scale two-dimensionalization
due to the Taylor-Proudman theorem with two-dimensionalization of the small scales due to the impossibility
of certain three-wave interactions leads to two-dimensionalization of all scales of motion in the extreme limit
RoRe1/2 << 1 is an interesting theoretical possibility which warrants further investigation.
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